CS 237: Probability in Computing

Wayne Snyder
Computer Science Department
Boston University

Lecture 13:

- Review: Expectation of Random Variables, Games
- Properties of Expectation
- Linearity of Expectation
- Expectation of Sum of Independent Random Variables
- Variance and Standard Deviation of Random Variables
- Properties of Variance

Discrete RandomVariables: Expected Value

A fundamental way of characterizing a collection of real numbers is the average or mean value of the collection:

Example: The mean/average of $\{2,4,6,9\}=21 / 4=5.7$
The corresponding notion for a random variable X is the Expected Value:

$$
E(X)=\sum_{k \in R_{X}} k \cdot P(X=k)
$$

Example: X = "the number of dots showing on a single thrown die"

$$
E(X)=\sum_{k \in R_{X}} \frac{k}{6}=\frac{1+2+3+4+5+6}{6}=\frac{21}{6}=3.5 \quad \begin{aligned}
& R_{X}=\{1,2,3,4,5,6\} \\
& f_{X}=\left\{\frac{1}{6}, \frac{1}{6}, \frac{1}{6}, \frac{1}{6}, \frac{1}{6}, \frac{1}{6}\right\}
\end{aligned}
$$

Discrete RandomVariables: Expected Value

Example: $\mathrm{Y}=|\mathrm{X}-3|$

$$
R_{X}=\{1,2,3,4,5,6\}
$$

$$
\begin{aligned}
& \text { nple: } \mathbf{Y}=|\mathrm{X}-\mathbf{3}| \\
& R_{Y}=\{0,1,2,3\} \\
& f_{Y}=\left\{\frac{1}{6}, \frac{2}{6}, \frac{2}{6}, \frac{1}{6}\right\}
\end{aligned}
$$

$$
f_{X}=\left\{\frac{1}{6}, \frac{1}{6}, \frac{1}{6}, \frac{1}{6}, \frac{1}{6}, \frac{1}{6}\right\}
$$

Discrete RandomVariables: Expected Value

Example: Y = "tosses of a fair coin until a heads appears"

$$
\begin{aligned}
& =\{1,2,3, \ldots\} \\
& =\left\{\frac{1}{2}, \frac{1}{4}, \frac{1}{8}, \ldots\right\} \\
& E(Y)=\sum_{k \in R_{Y}} k * f(k)=\frac{1}{2}+\frac{2}{4}+\frac{3}{8}+\frac{4}{16} \ldots=2.0
\end{aligned}
$$

Expected Value: Basic Properties

Theorem (Linearity of Expectation)

For any random variable \mathbf{X} and real numbers \mathbf{a} and \mathbf{b},

$$
E(a * X+b)=a * E(X)+b
$$

Proof:

$$
\begin{aligned}
E(a X+b) & =\sum_{k \in R_{X}}(a * k+b) * P_{X}(k) \\
& =\sum_{k \in R_{X}}\left(a * k * P_{X}(k)\right)+\left(b * P_{X}(k)\right) \\
& =\sum_{k \in R_{X}}\left(a * k * P_{X}(k)\right)+\sum_{k \in R_{X}}\left(b * P_{X}(k)\right) \\
& =a * \sum_{k \in R_{X}}\left(k * P_{X}(k)\right)+b * \sum_{k \in R_{X}} P_{X}(k) \\
& =a * E(X)+b * 1.0 \\
& =a * E(X)+b
\end{aligned}
$$

(Obvious) Corollary: For any constant $b, E(b)=b$.

This will make many calculations involving expected value MUCH easier!

Expected Value: Basic Properties

Theorem (Expectation of Sums of Random Variables):

If X and Y are two discrete random variables (not necessarily independent), then:

$$
\begin{aligned}
E(X+Y) & =\sum_{j \in R_{X}} \sum_{k \in R_{Y}}(j+k) \cdot P(X=j, Y=k) \\
& =\sum_{j \in R_{X}} \sum_{k \in R_{Y}} j \cdot P(X=j, Y=k)+k \cdot P(X=j, Y=k) \\
& =\sum_{j \in R_{X}} \sum_{k \in R_{Y}} j \cdot P(X=j, Y=k)+\sum_{j \in R_{X}} \sum_{k \in R_{Y}} k \cdot P(X=j, Y=k) \\
& =\sum_{j \in R_{X}} j \cdot P(X=j)+\sum_{k \in R_{Y}} k \cdot P(Y=k) \\
& =E(X)+E(Y)
\end{aligned}
$$

where in the second-to-last step, we used the Law of Total Probability:
If S_{1}, \ldots, S_{n} is a partition of the sample space S, and A is an event, then $A \cap S_{1}, S \cap S_{2}, \ldots, S \cap S_{n}$ is a partition of the even A, and

$$
P(A)=\sum_{1 \leq i \leq n} P\left(A, S_{i}\right)
$$

(This is essentially case analysis, breaking A up into n disjoint cases.)

Expected Value: Basic Properties

Theorem (Expectation of Product of Independent Random Variables):

If X and Y are two independent discrete random variables, then:

$$
\begin{aligned}
E(X \cdot Y) & =\sum_{j \in R_{X}} \sum_{k \in R_{Y}} j \cdot k \cdot P(X=j, Y=k) \\
& =\sum_{j \in R_{X}} \sum_{k \in R_{Y}} j \cdot k \cdot P(X=j) \cdot P(Y=k) \\
& =\sum_{j \in R_{X}} j \cdot P(X=j) \cdot\left(\sum_{k \in R_{Y}} k \cdot P(Y=k)\right) \\
& =\sum_{j \in R_{X}} j \cdot P(X=j) \cdot E(Y) \\
& =E(Y) \cdot \sum_{j \in R_{X}} j \cdot P(X=j) \\
& =E(Y) \cdot E(X) \\
& =E(X) \cdot E(Y)
\end{aligned}
$$

where in the second step, we used the independence of X and Y.

Expected Value: Basic Properties

Note: This theorem is not true if X and Y are dependent:

It is easy to see that this result is not true for dependent variables: Consider the following. Flip a coin and let X count the number of heads and Y count the number of tails. Clearly X and Y are not indepedent, and in fact $Y=1-X$. Clearly

$$
E(X) \cdot E(Y)=\frac{1}{2} \cdot \frac{1}{2}=\frac{1}{4} .
$$

But we have (showing the product and then the probability in parentheses):

$\mathbf{X Y}$	$\mathbf{0}$	$\mathbf{1}$
0	$0(0)$	$0(1 / 2)$
1	$0(1 / 2)$	$1(0)$

So

$$
E(X \cdot Y)=0 \cdot 0+0 \cdot \frac{1}{2}+0 \cdot \frac{1}{2}+1 \cdot 0=0
$$

Expected Value of the Standard Distributions

Expected Value of Bernoulli

$$
\begin{gathered}
X \sim \operatorname{Bernoulli}(p) \\
R_{X}=\{0,1\} \\
P_{X}=\{1-p, p\}
\end{gathered}
$$

$$
E(X)=1 \cdot p+0 \cdot(1-p)=p
$$

Expected Value of the Standard Distributions

Expected Value of Binomial

$$
\begin{aligned}
X & \sim B(N, p) \\
R_{X} & =\{0, \ldots, N\} \\
P_{X}(k) & =\binom{N}{k} p^{k}(1-p)^{N-k}
\end{aligned}
$$

Formally, if $\mathrm{Y} \sim \operatorname{Bernoulli}(\mathrm{p})$, and
N times
$\mathrm{X}=$ "The number of successes in N trials of Y " $=\overbrace{\mathrm{Y}+\mathrm{Y}+\ldots+\mathrm{Y}}$
By the expectation of sums of independent $R V$ s we immediately have:

$$
E(X)=N^{*} p
$$

Geometric Distribution: Expected Value

To derive the expected value, we can use the fact that $X \sim G(p)$ has the memoryless property and break into two cases, depending on the result of the first Bernoulli trial. Let
$\mathrm{X}_{\mathrm{S}}=$ "result of X when there is a success on the first trial"
$\mathrm{X}_{\mathrm{F}}=$ "result of X when there is a failure on the first trial"

Clearly,

- $\mathrm{E}\left(\mathrm{X}_{\mathrm{S}}\right)=1$
- $\mathrm{E}\left(\mathrm{X}_{\mathrm{F}}\right)=1+\mathrm{E}(\mathrm{X}$ for the remaining trials $)$

$$
=1+\mathrm{E}(\mathrm{X})
$$

By the memoryless property!

Thus we have:

$$
\begin{aligned}
\mu_{X} & =1 p+(1-p)\left(1+\mu_{X}\right) \\
& =p+1-p+\mu_{X}-p \mu_{X} \\
& =1+\mu_{X}-p \mu_{X} \\
0 & =1-p \mu_{X} \\
p \mu_{X} & =1 \\
\mu_{X} & =1 / p
\end{aligned}
$$

Geometric Distribution

Example

Suppose you draw cards WITH replacement until you get an Ace. How many draws would you expect it to take?

Solution:

On average, how many independent games of poker are required until a particular player is dealt a Royal Flush?

Solution: This is $G(0.00000154) . \quad E(X)=1 / 0.00000154=649,350.6493$

Geometric Distribution

Example
Suppose you draw cards WITH replacement until you get an Ace. How many draws would you expect it to take?

Solution: This is $G(1 / 13)$. $E(X)=13$

On average, how many independent games of poker are required until a particular player is dealt a Royal Flush?

Solution: This is $G(0.00000154) . \quad E(X)=1 / 0.00000154=649,350.6493$

Pascal Distribution: Expected Value

Since the Pascal is simply an "iterated" version of the Geometric, we can use the linearity of expectation again!

Formally, if $\mathrm{Y} \sim \operatorname{Bernoulli(} \mathrm{p})$ and
$\mathrm{X}=$ "The number of trials of Y until m successes occur" /

$$
=\underbrace{\mathrm{Y}_{1}+\ldots+\mathrm{Y}_{\mathrm{m}}}_{\mathrm{m} \text { times }}
$$

Then

$$
X \sim \operatorname{Pascal}(m, p)
$$

and by the linearity of expectation we have

$$
E(X)=E\left(Y_{1}\right)+\cdots+E\left(Y_{m}\right)=m \cdot E(Y)=m / p
$$

Discrete RandomVariables: Variance

The question is: How much does X vary from $\mathrm{E}(\mathrm{X})$? How spread out is the probability distribution around the expected value?

Discrete RandomVariables: Variance

The Variance of a random variable, $\operatorname{Var}(\mathrm{X})$, is the expected deviation from $\mathrm{E}(\mathrm{X})$.
But how to define "deviation"? Whatever we pick it should work on simple examples.
First (doomed) attempt: deviation = distance from expected value

$$
\text { deviation }=\mathrm{X}-\mathrm{E}(\mathrm{X}) \quad \operatorname{Var}(\mathrm{X})=\mathrm{E}[\mathrm{X}-\mathrm{E}(\mathrm{X})]
$$

Example: $\mathrm{X}_{1}=$ "Flip a coin and return the number of heads showing" $\mathrm{X}_{2}=$ "Flip a coin and return 100 * the number of heads showing"
$R_{X_{1}}=\{0,1\} \quad P_{X_{1}}=\left\{\frac{1}{2}, \frac{1}{2}\right\} \quad E(X)=0.5$
$R_{X_{2}}=\{0,100\} \quad P_{X_{2}}=\left\{\frac{1}{2}, \frac{1}{2}\right\} \quad E(X)=50$
Note that $\mathrm{E}(\mathrm{X})$ is a constant:

$$
E(X-E(X))=E(X)-E(X)=0.0
$$

$R_{X_{1}-0.5}=\{-0.5,0.5\} \quad P_{X_{1}-0.5}=\left\{\frac{1}{2}, \frac{1}{2}\right\} \quad E\left(X_{1}-0.5\right)=E\left(X_{1}\right)-0.5=0.0$
$R_{X_{2}-50}=\{-50,50\} \quad P_{X_{2}-0.5}=\left\{\frac{1}{2}, \frac{1}{2}\right\} \quad E\left(X_{2}-50\right)=E\left(X_{2}\right)-50=0.0$

Discrete RandomVariables: Variance

Example: $\mathrm{X}_{1}=$ "Flip a coin and return the number of heads showing" $\mathrm{X}_{2}=$ "Flip a coin and return 100 * the number of heads showing"

Second attempt: deviation = absolute value of distance from $\mathrm{E}(\mathrm{X})$

\[

\]

Discrete RandomVariables: Variance

Example: $\mathrm{X}_{1}=$ "Flip a coin and return the number of heads showing" $\mathrm{X}_{2}=$ "Flip a coin and return 100 * the number of heads showing"

Second attempt: deviation = absolute value of distance from $\mathrm{E}(\mathrm{X})$

$$
\text { deviation }=|\mathrm{X}-\mathrm{E}(\mathrm{X})| \quad \operatorname{Var}(\mathrm{X})=\mathrm{E}[|\mathrm{X}-\mathrm{E}(\mathrm{X})|]
$$

Looks promising! What's wrong with that?
Ugh! Requires case analysis and blows up with an exponential number of cases, and resulting in functions that are not continuous; such "piece-wise" functions are very hard to work with! Anyone want to take the derivative of the following function?

$$
f(x)=|x-30|+|x+50|+|x / 2+10|
$$

Discrete RandomVariables: Variance

Ok, finally, here is the best definition:

$$
\operatorname{Var}(X)=\operatorname{def} E\left[\left(X-\mu_{X}\right)^{2}\right]
$$

Alternate notation for expected value:

$$
\mu_{X}=E(X)
$$

or just μ if \mathbf{X} is obvious.
This is the standard definition and has several advantages:

- It it much easier to work with mathematically;
- Like the absolute value, it gives only positive values.

But it gives results which are not very intuitive!

$$
\begin{aligned}
& R_{X_{1}}=\{0,1\} \quad P_{X_{1}}=\left\{\frac{1}{2}, \frac{1}{2}\right\} \quad E(X)=0.5 \\
& R_{X_{2}}=\{0,100\} \quad P_{X_{2}}=\left\{\frac{1}{2}, \frac{1}{2}\right\} \quad E(X)=50 \\
& R_{\left(X_{1}-0.5\right)^{2}}=\{0.25\} \quad P_{\left(X_{1}-0.5\right)^{2}}=\{1.0\} \quad E\left[\left(X_{1}-0.5\right)^{2}\right]=\underline{0.25} \\
& R_{\left(X_{2}-50\right)^{2}}=\{2500\} \quad P_{\left(X_{2}-50\right)^{2}}=\{1.0\} \quad E\left[\left(X_{2}-50\right)^{2}\right]=\underline{2500}
\end{aligned}
$$

And what about the units? If these are dollars, then this is 2500 squared dollars...

Discrete RandomVariables: Standard Deviation

Therefore a more common measure of spread around the mean is the Standard Deviation:

$$
\begin{aligned}
& \sigma_{X}=\operatorname{def} \sqrt{\operatorname{Var}(X)} \\
& R_{X_{1}}=\{0,1\} \quad P_{X_{1}}=\left\{\frac{1}{2}, \frac{1}{2}\right\} \quad E(X)=0.5 \\
& R_{X_{2}}=\{0,100\} \quad P_{X_{2}}=\left\{\frac{1}{2}, \frac{1}{2}\right\} \quad E(X)=50 \\
& R_{\left(X_{1}-0.5\right)^{2}}=\{0.25\} \quad P_{\left(X_{1}-0.5\right)^{2}}=\{1.0\} \quad \operatorname{Var}\left(X_{1}\right)=0.25 \quad \sigma_{X_{1}}=0.5 \\
& R_{\left(X_{2}-50\right)^{2}}=\{2500\} \quad P_{\left(X_{2}-50\right)^{2}}=\{1.0\} \quad \operatorname{Var}\left(X_{2}\right)=2500 \quad \sigma_{X_{2}}=50
\end{aligned}
$$

This has all the advantages of the variance, plus three more:

- It explains simple examples;
- The units are correct; and
- It corresponds to a well-known geometric notion, the Euclidean Distance....

Discrete RandomVariables: Variance and StdDev

Let's apply this idea to our games:

Game One: For $\$ 1$ per round, you can flip a coin, and I'll give you $\$ 11$ (net: $\$ 10$) if heads appears, and nothing if tails appears (net: $-\$ 1$). Call this the random variable X_{1} :

$$
E\left(X_{1}\right)=10 \cdot \frac{1}{2}-1 \cdot\left(1-\frac{1}{2}\right)=\$ 4.50
$$

Game Two: For \$1 per round, you can flip a coin 20 times, and if you get 20 heads, I'll give you $\$ 5,767,168$, else you lose the $\$ 1$. Call this the random variable X_{2} :

$$
\begin{array}{rlrl}
& E\left(X_{2}\right)=5,767,167 \cdot \frac{1}{2^{20}}-1 \cdot\left(1-\frac{1}{2^{20}}\right)=\$ 4.50 \\
\operatorname{Var}\left(X_{1}\right) & =E\left[\left(X_{1}-\mu_{X}\right)^{2}\right] & \operatorname{Var}\left(X_{2}\right)=E\left[\left(X_{2}-\mu_{X}\right)^{2}\right] \\
& =\frac{(10-4.5)^{2}}{2}+\frac{(-1-4.5)^{2}}{2} & & =\frac{(5,767,167-4.5)^{2}}{2^{20}}+(-5.5)^{2} \cdot \frac{2^{20}-1}{2^{20}} \\
& =\frac{5.5^{2}+(-5.5)^{2}}{2} & & =31,719,393.75 \\
& =5.5^{2} & & \sigma_{X_{2}} \neq \$ 5,631 । \\
& =30.25 & &
\end{array}
$$

Discrete RandomVariables: Variance and StdDev

Useful formulae for the Variance and Standard Deviation:
Theorem:

$$
\operatorname{Var}(X)=E\left(X^{2}\right)-E(X)^{2}
$$

Proof:

$$
\begin{aligned}
\operatorname{Var}(X) & =E\left[(X-E(X))^{2}\right] \\
& =E\left[X^{2}-2 \cdot X \cdot E(X)+E(X)^{2}\right] \\
& =E\left(X^{2}\right)-2 \cdot E(X) \cdot E(X)+E(X)^{2} \\
& =E\left(X^{2}\right)-E(X)^{2}
\end{aligned}
$$

$$
\begin{aligned}
\operatorname{Var}\left(X_{2}\right) & =E\left[\left(X_{2}-\mu_{X}\right)^{2}\right] \\
& =\frac{(5,767,167-4.5)^{2}}{2^{20}}+(-5.5)^{2} \cdot \frac{2^{20}-1}{2^{20}} \\
& =31,719,393.75 \\
\sigma_{X_{2}} & =\$ 5,631
\end{aligned}
$$

$$
\begin{aligned}
\operatorname{Var}\left(X_{2}\right) & =E\left(X_{2}^{2}\right)-E\left(X_{2}\right)^{2} \\
E\left(X_{2}^{2}\right) & =\frac{(5,767,167)^{2}}{2^{20}}+(-1) \cdot \frac{2^{20}-1}{2^{20}} \\
& =31,719,413+1=31,719,414 \\
\operatorname{Var}\left(X_{2}\right) & =31,719,414-4.5^{2} \\
& =31,719,393.75 \\
\sigma_{X_{2}} & =\$ 5,631
\end{aligned}
$$

Discrete RandomVariables: Variance and StdDev

Useful formula for the Variance and Standard Deviation, showing that variance and the standard deviation are NOT linear functions:

Theorem: $\operatorname{Var}(a X+b)=a^{2} * \operatorname{Var}(X)$
Proof:

$$
\begin{aligned}
\operatorname{Var}(a X+b) & =E\left[\left((a X+b)-\mu_{a X+b}\right)^{2}\right] \\
& =E\left[\left((a X+b)-\left(a \mu_{X}+b\right)\right)^{2}\right] \\
& =E\left[\left(a\left(X-\mu_{X}\right)\right)^{2}\right] \\
& =E\left[a^{2} *\left(X-\mu_{X}\right)^{2}\right] \\
& =a^{2} * E\left[\left(X-\mu_{X}\right)^{2}\right] \\
& =a^{2} * \operatorname{Var}(X)
\end{aligned}
$$

Corollary:

$$
\sigma_{a X+b}=|a| * \sigma_{X}
$$

Discrete RandomVariables: Variance and StdDev

However, independence, as usual, makes things simpler:
Theorem: (Variance of Sum of Independent Random Variables)
Let X and Y be independent random variables, then

$$
\operatorname{Var}(X+Y)=\operatorname{Var}(X)+\operatorname{Var}(Y)
$$

Proof:

$$
\begin{aligned}
\operatorname{Var}(X+Y) & =E\left[(X+Y)^{2}\right]-E(X+Y)^{2} \\
& =E\left[X^{2}+2 X Y+Y^{2}\right]-(E(X)+E(Y))^{2} \\
& =E\left(X^{2}\right)+2 E(X Y)+E\left(Y^{2}\right)-\left[E(X)^{2}-2 E(Y) E(Y)-E(Y)^{2}\right] \\
& =E\left(X^{2}\right)-E(X)^{2}+E\left(Y^{2}\right)-E(Y)^{2}+2[E(X Y)-E(Y) E(Y)] \\
& =\operatorname{Var}(X)+\operatorname{Var}(Y)
\end{aligned}
$$

This term is called the Covariance of X and $\mathrm{Y}, \operatorname{Cov}(\mathrm{X}, \mathrm{Y})$, and measures how much they "vary together". For independent $\mathrm{RV}, \operatorname{Cov}(\mathrm{X}, \mathrm{Y})=0$. This will be back in a few weeks....

