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Lecture 13:

o Review: Expectation of Random Variables, Games
o Properties of Expectation

o Linearity of Expectation

o Expectation of Sum of Independent Random Variables
o Variance and Standard Deviation of Random Variables

o Properties of Variance



Discrete RandomVariables: Expected Value

A fundamental way of characterizing a collection of real numbers is the average
or mean value of the collection:

Example: The mean/average of {2,4,6,9}=21/4=5.7

The corresponding notion for a random variable X is the Expected Value:

E(X) = Z k-P(X = k)

kERy

Example: X = “the number of dots showing on a single thrown die”

Ry = {1,2,3,4,5,6)

= 3.5

kK 1+2+43+4+45+6 21
E(X) = ad 21
keERX 6 6 6




Discrete RandomVariables: Expected Value

RX = {1a2a3749596}
o= (hh L

Example: Y=|X-3| E(Y)
!

ility DlstrlbL'lon fory=|x-3|
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E(Y) = ) kxflk) =

k € Ry



Discrete RandomVariables: Expected Value

Example: Y = “tosses of a fair coin until a heads appears”

Probability Distribution for Y

Ry=1{1,2,3,..)

fr={LiLl1 .

E(Y) = ) kxfk) = %+3+§+i...=2.0

K ERy 4 8 16



Expected Value: Basic Properties

Theorem (Linearity of Expectation)

For any random variable X and real numbers a and b,

ElaxX+b) =axEX)+b

Proof: E(aX +b)

Z (a*k+ D) * Py(k)

k € Ry
— 2 (a * k % Py(k))+ (b * Px(k))

k € Ry
= Y (@xkxPik) + Y (b*Px(k)

k € Ry k € Ry
=ax Yy (kxPx(k) + b* Y Px(k)

k € Ry k € Ry

=axEX) + bx1.0
_ 4 EX) + b This will make many

calculations involving
expected value

(Obvious) Corollary: For any constant b, E(b) = b. MUCH easier!



Expected Value: Basic Properties
Theorem (Expectation of Sums of Random Variables):

If X and Y are two discrete random variables (not necessarily independent), then:
EX+Y)= ) Y (j+k-PX=jY =k
JERx k€ERy

— Z Z j-PX=jY=k+k-P(X=jY =k)

JERy kERy

=) Y i PX=jiY=k+ Y Y k-PX=jY=k

JERx KERy JERy KkERy
=) jPX=j)+ ) k-P(Y=k)
JERY kERy
= E(X) + E(Y)

where in the second-to-last step, we used the Law of Total Probability:

If Sy, ...,.S, is a partition of the sample space .S, and A is an event, then
ANS,SNS,,...,85N.S, is a partition of the even A, and

P(A) = 2 P(A, S))

1<i<n

(This is essentially case analysis, breaking A up into »n disjoint cases.)



Expected Value: Basic Properties

Theorem (Expectation of Product of Independent Random Variables):

If X and Y are two independent discrete random variables, then:

EX-Y)= Z Z j k-P(X=jY=k)

JERy KERy
=D 2 J k- PX=)) PY =k
JERyx KERYy
= Z j-P(X:j)-(Z k-P(Y=k))
JERy kERy
= Y j-P(X=j)- EY)
JERx
=E®Y)- ), j-P(X =)
JERx
= E(Y) - E(X)
= E(X) - E(Y)

where in the second step, we used the independence of X and Y.



Expected Value: Basic Properties

Note: This theorem is not true if X and Y are dependent:

It is easy to see that this result is not true for dependent variables: Consider the following. Flip a coin and let X count the
number of heads and Y count the number of tails. Clearly X and Y are not indepedent, and in fact Y = 1 — X. Clearly

1 1 1

But we have (showing the product and then the probability in parentheses):

XY 0 1

0 0( O0(1/2)
1 0(1/2) 1(0)

So

1 1
E(X -Y) =0-0+0'5+0°5+1'0= 0



Expected Value of the Standard Distributions

Expected Value of Bernoulli

X ~ Bernoulli(p) s

RX={0a1}

Py ={1-p,p}

EX)=1-p+0-(1-p)=p



Expected Value of the Standard Distributions

. . |
Expected Value of Binomial Py of §(5.05)

X ~B(N,p)
RX={0,...,N}

N
Py(k) = ( ) ) pt (1= p)N*

Formally, if Y ~ Bernoulli(p), and N times

|

( \
X = “The number of successes in N trialsof Y’ = Y+Y+..+Y

By the expectation of sums of independent RVs we immediately have:

EX)=N*p



Geometric Distribution: Expected Value

To derive the expected value, we can use the fact that X ~ G(p) has the memoryless
property and break into two cases, depending on the result of the first Bernoulli trial.

Let

Xg = “result of X when there is a success on the first trial”
Xp= “result of X when there is a failure on the first trial”

Clearly,

o E(Xg) =1

o E(Xp) =1+ E( X for the remaining trials )
-1+E(X)

By the memoryless property!

Thus we have:

pux = 1p+ A —=p)(A + px)
=p+1l—-p+ux—pux

= 1+ pux —pux
O0=1-ppux
pux =1

pux = lip



Geometric Distribution

Example

Suppose you draw cards WITH replacement until you get an Ace. How many draws
would you expect it to take?

Solution:
On average, how many independent games of poker are required until a particular
player is dealt a Royal Flush?

Solution: This is G(0.00000154). E(X) = 1/ 0.00000154 = 649,350.6493



Geometric Distribution

Example

Suppose you draw cards WITH replacement until you get an Ace. How many draws
would you expect it to take?

Solution: Thisis G(1/13). EX) =13

On average, how many independent games of poker are required until a particular

player is dealt a Royal Flush?

Solution: This is G(0.00000154). E(X) = 1/ 0.00000154 = 649,350.6493



Pascal Distribution: Expected Value

Since the Pascal is simply an “iterated” version of the Geometric, we can use the
linearity of expectation again!

Formally, if Y ~ Bernoulli( p ) and

X = “T'he number of trials of Y until m successes occur’ /

=Y{+... +Y,

\

|
m times

Then

X ~ Pascal(m, p)

and by the linearity of expectation we have

E(X) = E(Y,)+ -+ EX,) =m-EY) =m/p




Discrete RandomVariables: Variance
The question is: How much does X vary from E(X)? How spread out is the
probability distribution around the expected value?
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Discrete RandomVariables: Variance

The Variance of a random variable, Var(X), is the expected deviation from E(X).
But how to define “deviation” Whatever we pick it should work on simple examples.

First (doomed) attempt: deviation = distance from expected value
deviation = X — E(X) Var(X) = E[ X-E(X) ]

Example: X; = “Flip a coin and return the number of heads showing”
X, = “Flip a coin and return 100 * the number of heads showing”

Ry ={0,1} Py ={L1} EX)=05 Note that E(X) is a constant:

11
272
Ry, = {0,100} Py, ={3,5} EXX) =50 E(X-EX))=E(X)-E(X)=0.0

Ry o5 = {-05,05}  Px_os = {3.5} E(X; -05)=E(X;)-0.5 =0.0
Rx,_so = {—50, 50} Py, o5 = { % % } E(X, —50)=E(X,)-50 =0.0

1
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Discrete RandomVariables: Variance

Example: X; = “Flip a coin and return the number of heads showing”
X, = “Flip a coin and return 100 * the number of heads showing”

Second attempt: deviation = absolute value of distance from E(X)

deviation = | X — E(X) | Var(X) = E[ | X - E(X) | ]

Ry, = {0,1} Py = { EX)=0.5

N |—

1y

Ry, = {0,100} Py,= {3,5} EX) =50
Rx,—0s1 = {05} Pix,-05 = {1.0} E(1X; —051)=0.5
Rx,_so = {50}  Pix,-s0 = {1.0} E(1X, —501) = 50

Probability Distribution for X Probability Dislributlon for X,




Discrete RandomVariables: Variance

Example: X; = “Flip a coin and return the number of heads showing”
X, = “Flip a coin and return 100 * the number of heads showing”

Second attempt: deviation = absolute value of distance from E(X)
deviation = | X — E(X) | Var(X) = E[ | X - E(X) | ]
Looks promising! What's wrong with that?
Ugh! Requires case analysis and blows up with an exponential number of cases, and

resulting in functions that are not continuous; such "piece-wise" functions are very hard
to work with!  Anyone want to take the derivative of the following function?

f(x) = 1x=3014+1x+50141x/2 + 10| 2

100 -




Discrete RandomVariables: Variance

Ok, finally, here is the best definition: Alternate notation for

expected value:

Var(X) =g E[(X — px )*] px = EX)

or just p if X is obvious.

This is the standard definition and has several
advantages:

o It it much easier to work with mathematically;
o Like the absolute value, it gives only positive values.

But it gives results which are not very intuitive!

e

........................

Ry ={0,1} Py = { EX)=0.5

14
[y Ny S R ———
i

Ry, = {0,100} Py,

Il
——

} EX) =50

» = {0.2 Pix,—0s2 = {1. E[(X; —0.5)2]1=0.2 .
Ry o5 = 1025} Puosp = {10} [(X; =05)°1=025 And what about the units?
Ry, sop = {2500} Py _s0p = {10} E[ (X, — 50)*] = 2500 If these are dollars, then this is

2500 squared dollars...



Discrete RandomVariables: Standard Deviation

Therefore a more common measure of spread around the mean is the
Standard Deviation:

OX =def \/VCU‘(X)

Ry, =1{0,1} P, ={41} EX)=05

1
2
Ry, = {0,100} Py, = {3,3} EX) = 50
R, 052 = 1025} Pix 052 = {10} Var(X;) =0.25 ox, = 0.5

Ry, _sop = 12500} FPon-s02 = {10} Var(Xp)= 2500 oy, = 50

This has all the advantages of the variance, plus three more:
o It explains simple examples;
o The units are correct; and

o It corresponds to a well-known geometric notion, the Euclidean Distance....



Discrete RandomVariables: Variance and StdDev

Let's apply this idea to our games:

Game One: For $1 per round, you can flip a coin, and I'll give you $11 (net: $10) if
heads appears, and nothing if tails appears (net: -$1). Call this the random variable X, :

E(X;)) =10-2-1-(1-3) = $4.50
Game Two: For $1 per round, you can flip a coin 20 times, and if you get 20 heads, I'll
give you $5,767,168, else you lose the $1. Call this the random variable X, :

L_1.01-21) = $4.50

220 220 7 T

E(X;) = 5,767,167 -

Var(X,) = E[(X; — ux)*] Var(X;) = E[(X; — ux)?]
—4.5)2 -1 —4.5)? 5,767,167 — 4.5)2 20 _q
_ (10-452 (-1-45) _ ( ) +(_5_5)z,2
2 2 220 220
_ 55+ (5.5 = 31,719, 393.75
2 -~ N
=5 52 /$ \
' 5,631
= 30.25 ox F ,
P S N ~ _ - 7’

O'Xl ’—l\$550 ,\

~ e




Discrete RandomVariables: Variance and StdDev

Useful formulae for the Variance and Standard Deviation:

Theorem:
Var(X) = E(X?) — E(X)*
Proof:
Var(X) = E[ (X - E(X))* ]
2 2
= E[ X" —2- X E(X) + E(X)" ] Recall that
= E(X%) -2 EX)- EX)+ E(X)* E(X) is a
— E(Xz) _ E(X)2 constant!
Var(X,) = E(X}) — E(X,)*
Var(X,) = E[(X; — ux)*] E(X2) = (5’7672’0167)2 +(=1) 2202;1
_ (5,767,167 — 4.5)° +(=5.5)2 - 2% -1 _ 31,710,413 + 1 = 31, 719-414

220 220

Var(X,) = 31,719,414 — 4.5?
31,719, 393.75

= 31,719,393.75
$5, 631 ox, = $5,631




Discrete RandomVariables: Variance and StdDev

Useful formula for the Variance and Standard Deviation, showing that variance and the
standard deviation are NO'T linear functions:

Theorem: Var(aX + b) = a* * Var(X)
Proof:

Var(aX + b) = E|((aX +b) — pax+s )? |

- E ((aX+b)—(a,uX+b))2]

=E:(a(X—uX))ﬂ

Corollary:

= E|a* * (X — ux )?

Oux+b — IaI %k Oy

= a *E[(X—ﬂx)z

= a*® % Var(X)



Discrete RandomVariables: Variance and StdDev

However, independence, as usual, makes things simpler:
Theorem: (Variance of Sum of Independent Random Variables)

Let X and Y be independent random variables, then
Var(X+Y) = Var(X) + Var(Y)

Proof:

Var(X +Y) = E[(X +Y)*] — E(X +Y)?
= E[X? +2XY +Y?] - (E(X) + E(Y))?
= E(X*) +2E(XY)+ EY?) - [ E(X)* -=2EQY)E(Y) - E(Y)*]
= E(X?) - EX)’+ EY?) - EY)* +2[E(XY)- EY)EY)]
=VarX)+Vary)

This term is called the Covariance of X

and Y, Cov(X,Y), and measures how
much they “vary together”. For
independent RV, Cov(X,Y) = 0.

This will be back in a few weeks....



